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approach

Seung-Kook Kim†§, Yong-Wan Kim‡‖ and Young-Jai Park‡¶
† Department of Physics, Seonam University, Namwon, Chonbuk 590-170, Korea
‡ Department of Physics and Basic Science Research Institute, Sogang University,
CPO Box 1142, Seoul 100-611, Korea

Received 23 June 1998, in final form 10 August 1998

Abstract. We show how to systematically derive the complete set of gauge transformations of
two different types of gauge-invariant model, the chiral Schwinger and CP1 with Chern–Simons
term, in the Lagrangian formalism.

1. Introduction

The Hamiltonian embedding [1–6] of constrained systems has the drawback of not
necessarily leading to a manifestly Lorentz covariant partition function. This problem could
be avoided in the Lagrangian field–anti-field approach [7], which is based on an analysis
of local symmetries of a Lagrangian. The establishment of the full, irreducible set of local
symmetries of a Lagrangian thus plays a fundamental role in this formalism. In fact, these
symmetries are often put, by hand, in the action while constructing the Lagrangian, and
sometimes they are found by direct observation or trial and error. Moreover, it may be
that for some complicated Lagrangians the full local symmetries cannot be seen directly.
The systematic and exhaustive determination of gauge symmetry structure thus constitutes
an integral part of the field–anti-field quantization program without the use of Dirac’s
Hamiltonian construction of the corresponding generators.

On the other hand, the Hamiltonian method of Batalinet al (BFT) [1] has been applied
to second-class constrained systems [2, 3], which yield the strongly involutive first-class
constraint algebra in an extended phase space. Recently, we have quantized other interesting
models including the Proca models by using our improved BFT formalism [4–6].

In this paper, we will consider the Lagrangian approach of different types of gauge
invariant systems, which have different constraint structure in the Lagrangian sense.
According to the classification of constraints in [8], the A-type constraints are defined
by functions without having velocities, while the B-type ones are a set of functions of
velocity and coordinates. With this type of classification, we will show that the ‘identically’
vanishing parts of the successive evolutions for the stability of the constraints systematically
generate the gauge symmetry of the system. Recently, Shirzad [9] tried to apply this
Lagrangian formulation to the chiral Schwinger model (CSM) as well as the Schwinger
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model. However, he could not obtain the complete set of gauge transformations because he
used the anomalous CSM, which is a gauge non-invariant second-class constraint system.
Thus, we will briefly recapitulate the BFT Hamiltonian embedding [4, 10] of the gauge non-
invariant CSM witha > 1 [11] in section 2, in order to show how one can systematically
construct the gauge-invariant CSM. Then, we explicitly show how to derive the exact form
of the gauge transformation of the first-class CSM model, which is of type B, making
use of the iterated Lagrangian equations of motion [9, 12]. In section 3, we also derive
the well known form of the gauge transformation of the gauge-invariant CP1 model with
Chern–Simons (CS) term [13–16], which is the case of mixed type A and B constraints.
Our conclusions are given in section 4.

2. Chiral Schwinger model with Wess–Zumino (WZ) term

We first briefly recapitulate our previous BFT Hamiltonian embedding [4, 10] of the
bosonized CSM model in the case ofa > 1, whose dynamics are given by

SCSM =
∫

d2x

[
−1

4
FµνF

µν + 1

2
∂µφ∂

µφ + eAν(ηµν − εµν)∂µφ + 1

2
ae2AµA

µ

]
(1)

where ηµν = diag(1,−1), ε01 = 1, and a is a regularization ambiguity [11]. The
canonical momenta are given byπ0 = 0, π1 = F 01, and πφ = φ̇ + e(A0 + A1). One
then finds one primary [17] constraint�1 ≡ π0 ≈ 0 and one secondary constraint
�2 ≡ ∂1π1 + eπφ + e∂1φ − e2A1 + (a − 1)e2A0 ≈ 0, which is obtained by requiring
the consistency of the primary constraint�1 with time evolution. These constraints fully
form the second-class:

1ij (x, y) := {�i(x),�j (y)}
= − e2(a − 1)εij δ(x − y) (2)

and the canonical HamiltonianHc is given by

Hc =
∫

dx

[
1

2
(π1)

2+ 1

2
(πφ)

2+ 1

2
(∂1φ)

2− e(πφ + ∂1φ)(A
0+ A1)

−A0∂1π1− 1

2
ae2{(A0)2− (A1)2} + 1

2
e2(A0+ A1)2

]
. (3)

We now introduce auxiliary fields8i in order to convert the second-class constraint�i
into first-class ones in an extended phase space. Following the BFT Hamiltonian formalism
[1, 4–6, 10], we require these fields to satisfy

{8i(x),8j (y)} = ωij (x, y) = εij δ(x − y)
{F,8i} = 0 (4)

whereF denotes the original variables,(Aµ, πµ, φ, πφ), collectively. Strongly involutive
constraints̃�i satisfying the requirement{�̃i, �̃j } = 0 as well as the boundary conditions,
�̃i |8i=0 = �i , can be obtained in power series as�̃i =

∑
n �

(n)
i , where�(n)i is proportional

to (8j )n. The first-order correction terms in the infinite series are simply given by
�
(1)
i =

∫
dy Xij (x, y)8j (y). Then, the strongly involutive relation of̃�i provides the

following condition:

1ij (x, y)+
∫

du dv Xik(x, u)ω
k`(u, v)Xj`(v, y) = 0 (5)
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from which we get a solutionXij = e
√
a − 1δij δ(x − y) in the case of choosingωij as in

equation (4). Now, making use ofωij andXij , we can easily obtain the strongly involutive
constraints as̃�i = �i + e

√
a − 18i .

On the other hand, corresponding to the original variablesF , strongly involutive BFT
variablesF̃ ≡ (Ãµ, π̃µ, φ̃, π̃φ) such as{�̃i, F̃ } = 0 are given by

Ãµ =
(
A0+ 1

e
√
a − 1

82, A1− 1

e
√
a − 1

∂18
1

)
π̃µ =

(
π0+ e

√
a − 181, π1+ e√

a − 1
81

)
φ̃ = φ − 1√

a − 1
81

π̃φ = πφ − 1√
a − 1

∂18
1. (6)

Using these BFT fields, we can find the desired first-class HamiltonianH̃ from the canonical
HamiltonianHc as

H̃ (Aµ, πν, φ, πφ;8i) = Hc(Ã
µ, π̃ν, φ̃, π̃φ)

= Hc(A
µ, πν, φ, πφ)+

∫
dx

[
1

2
(∂18

1)2+ e2

2(a − 1)
(81)2+ 1

2
(82)2

− 1

e
√
a − 1

[e2π1− e2(a − 1)∂1A
1]81− 1

e
√
a − 1

82�̃2

]
(7)

which, by construction, is automatically strongly involutive, i.e.{�̃i, H̃ } = 0.
It seems appropriate to comment on generators of local symmetry transformation in the

Hamiltonian formulation, which are fully given by the first-class constraints. Defining the
generators by

G :=
2∑
α=1

∫
d2x (−1)α+1εα(x)�̃α(x) (8)

we have(δA = {A,G})
δA0 = ε1 δπ0 = (a − 1)e2ε2

δA1 = −∂1ε
2 δπ1 = −e2ε2

δφ = −eε2 δπφ = e∂1ε2

δθ = −eε2 δπθ = −(a − 1)eε1. (9)

Without loss of any generality, we have inserted a factor(−1)α+1 in equation (8) in order
to make the gauge transformation as usual, and also identified the new variables8i as a
canonically conjugate pair,8i = (√a − 1θ, πθ/

√
a − 1), satisfying equation (4).

Now, we consider the partition function of the model in order to present the
Lagrangian corresponding tõH . The starting phase space partition function is given by
the Faddeev–Popov formula [18] as follows

Z =
∫
DAµDπµDφDπφDθDπθ

2∏
i,j=1

δ(�̃i)δ(0j ) det|{�̃i, 0j }|eiS ′ (10)

where

S ′ =
∫

d2x (πµȦ
µ + πφφ̇ + πθ θ̇ − H̃′) (11)
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and we have used an equivalent first-class Hamiltonian by adding a term proportional to
the first-class constraint̃�2:

H̃ ′ = H̃ +
∫

dx
1

(a − 1)e
πθ �̃2. (12)

Note that the gauge fixing functions0j are chosen so that the determinant occurring in the
functional measure is non-vanishing. Theπ0 integration is trivially performed by exploiting
the delta functionδ(�̃1) = δ[π0 + (a − 1)eθ ]. After exponentiating the remaining delta
function δ(�̃2) = δ[∂1π1+ eπφ + e∂1φ − e2A1+ (a − 1)e2A0+ eπθ ] in terms of a Fourier
variableξ asδ(�̃2) =

∫
Dξ exp[−i

∫
d2x ξ�̃2], transformingA0→ A0+ ξ , and integrating

the momentum variablesπφ , π1, andπθ , one could obtain the gauge invariant action up to
a total divergence as follows

S = SCSM+ SWZ (13)

SWZ =
∫

d2x

[
1

2
(a − 1)∂µθ∂

µθ + e∂µθ{(a − 1)ηµν + εµν}Aν
]

(14)

whereSWZ is the well known WZ term, which serves to cancel the gauge anomaly. The
corresponding measure now reads

[Dµ] = DAµDφDθDξ
2∏

β=1

δ(0β [A0+ ξ, A1, φ2θ ]) det|{�̃α, 0β}|. (15)

Now, we are ready to apply the Lagrangian approach [9, 12] to the gauge invariant
action (13). The equations of motion are of the form

L
(0)
i (x) :=

∫
dy [W(0)

ij (x, y)ϕ̈
j (y)+ α(0)i (y)δ(x − y)] = 0 i = 1, . . . ,4 (16)

whereW(0)
ij (x, y) is the Hessian matrix

W
(0)
ij (x, y) := δ2L

δϕ̇i(x)δϕ̇j (y)

=


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 a − 1

 δ(x − y) = W̃ (0)
ij δ(x − y) (17)

(ϕi)T(x) := (A0, A1, φ, θ)(x) (18)

(α
(0)
i )

T(x) :=
∫

dy

[
∂2L

∂ϕj (y)∂ϕ̇i(x)
∂ϕ̇j (y)

]
− ∂L
∂ϕi(x)

= (αA0, αA1, αφ, αθ )(x) (19)

with

αA0 = ∂1(Ȧ
1+ ∂1A

0)− eφ̇ − e∂1φ − ae2A0− (a − 1)eθ̇ + e∂1θ

αA1 = ∂1Ȧ
0− eφ̇ − e∂1φ + ae2A1+ eθ̇ − (a − 1)e∂1θ

αφ = eȦ0+ eȦ1− ∂2
1φ + e∂1A

0+ e∂1A
1

αθ = (a − 1)eȦ0− eȦ1− (a − 1)∂2
1θ − e∂1A

0+ (a − 1)e∂1A
1. (20)

The Hessian matrix (17) is of rank three. Hence, there exists a ‘zeroth generation’ null
eigenvectorλ(0)(x, y) satisfying∫

dy λ(0)i (x, y)W
(0)
ij (y, z) = 0. (21)
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For simplicity, let us normalize it to have components

λ(0)(x, y) = (1, 0, 0, 0)δ(x − y). (22)

Correspondingly, we have a ‘zeroth generation’ constraint

�
(0)
1 (x) =

∫
dy λ(0)i (x, y)L

(0)
i (y) = L(0)1 (x) = αA0 = 0 (23)

in the Lagrangian sense.
Similar to the time stability condition of constraints in the Hamiltonian formalism, we

now require the primary Lagrange constraint (23) to be independent of time. We thus need
to add to the equations of motion (16) through the equation�̇

(0)
1 = 0. Then, the resulting set

of five equations may be summarized in the form of the set of ‘first generation’ equations,
L
(1)
i1
(x) = 0, i1 = 1, . . . ,5, with

L
(1)
i1
(x) :=


L
(0)
i i = 1, . . . ,4

d

dt
(λ
(0)
i L

(0)
i ).

(24)

L
(1)
i1
(x) can be written in the general form

L
(1)
i1
(x) :=

∫
dy [W(1)

i1j
(x, y)ϕ̈j (y)+ α(1)i1 (y)δ(x − y)] = 0 (25)

where

W
(1)
i1j
(x, y) =

 W̃
(0)
ij

0 ∂x1 −e −(a − 1)e

 δ(x − y) (26)

and

(α
(1)
i1
)T(x) = ((α(0)i )T, α(1)5 )(x) (27)

with

α
(1)
5 = ∂2

1Ȧ
0− ae2Ȧ0+ e∂1φ̇ − e∂1θ̇ . (28)

Next, let us repeat the previous analysis taking equation (25) as a starting point, and
looking for solutions of a first generation null eigenvector of∫

dy λ(1)i1 (x, y)W
(1)
i1j
(y, z) = 0. (29)

SinceW(1)
i1j
(x, y) is still of rank three, there exists a null eigenvector,λ(1)(x, y), with the

previous eigenvector extended asλ(0)(x, y) = (1, 0, 0, 0, 0)δ(x − y). This λ(1)(x, y) is of
the form(0,−∂x1 , e, e,1)v(x)δ(x − y). We could thus choose it as

λ
(1)
i1
(x, y) = (0,−∂x1 , e, e,1)δ(x − y). (30)

The associated constraint is found to vanish ‘identically’:

�
(1)
2 (x) =

∫
dy λ(1)i1 (x, y)L

(1)
i1
(y) = −∂1α

(1)
2 + eα(1)3 + eα(1)4 + α(1)5 = 0. (31)

Therefore, the algorithm ends at this stage.
The local symmetries of the action (13) are encoded in the identity (31). Recalling (16)

and (25) we see that the identity (31) can be rewritten as follows

�
(1)
2 (x) = −∂1L

(0)
2 + eL(0)3 + eL(0)4 +

d

dt
L
(0)
1 ≡ 0. (32)
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This result is a special case of a general theorem stating [8, 9] that the identities�
(l)
k ≡ 0

can always be written in the form

�
(l)
k :=

∑
s=0

∫
dy

(
(−1)s+1 ds

dt s
φ
i(s)
k (x, y)L

(0)
i (y)

)
. (33)

Then, for the gauge-invariant CSM, we have the following relations

φ
2(0)
2 (x, y) = ∂x1 δ(x − y)
φ

3(0)
2 (x, y) = −eδ(x − y)
φ

4(0)
2 (x, y) = eδ(x − y)
φ

1(1)
2 (x, y) = −δ(x − y) (34)

while all the others are vanishing.
On the other hand, it follows from general considerations [8, 9] that the action (13) is

invariant under the transformation

δϕi(y) :=
∑
k

∫
dx (3k(x)φ

i(0)
k (x, y)+ 3̇k(x)φ

i(1)
k (x, y)). (35)

For the CSM case this corresponds to the transformations

δAµ(x) = ∂µ32 δφ(x) = −e32 δθ(x) = −e32. (36)

This is the set of symmetry transformations which is identical with the previous result (9)
of the extended Hamiltonian formalism, when we setε1 = ∂0ε2 and ε2 = 32, similar to
the Maxwell case [19]. As results, we have systematically derived the set of symmetry
transformations starting from the Lagrangian of the gauge invariant CSM.

3. CP1 model with CS term

The CP1 model with CS term [13, 14], which is an archetype example of field theory and
the constrained system of mixed type A and B, was considered by Polyakov who found
Bose–Fermi statistics transmutation [20] in the model. Han [15] has analysed this CP1

model by using the Dirac formalism together with the first-order Lagrangian method. We
have recently analysed the CP1 model with CS term by using fully the symplectic formalism
[16].

Our starting Lagrangian for the gauge-invariant CP1 model with CS term [13–16] to
analyse in the Lagrangian approach is given by

L = κ

2π
εµνρAµ∂νAρ + (∂µ + iAµ)z

∗
a(∂

µ − iAµ)za a = 1, 2 (37)

with the CP1 constraint

� = |za|2− 1= 0 (38)

where the convention isηµν = diag(1,−1,−1) andε012= +1.
The equations of motion from the Lagrangian (37) can be written in the form

L
(0)
i (x) :=

∫
d2x [W(0)

ij (x, y)ϕ̈
j (y)+ α(0)i (y)δ2(x − y)] = 0 i = 1, . . . ,7 (39)
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whereW(0)
ij (x, y) is

W
(0)
ij (x, y) =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0


δ2(x − y) = W̃ (0)

ij δ
2(x − y) (40)

(ϕi)T(x) = (A0, A1, A2, z1, z2, z
∗
1, z
∗
2)(x) (41)

(α
(0)
i )

T(x) = (αA0, αA1, αA2, αz1, αz2, αz∗1, αz
∗
2
)(x) (42)

with

αA0 = − κ
π
εmn∂

mAn − i(z∗aża − ż∗aza)− 2|za|2A0

αAm = − κ
π
εnmȦ

n + κ

π
εnm∂

nA0+ i(z∗a∂
mza − za∂mz∗a)+ 2|za|2Am

αza = iz∗aȦ
0+ 2iAµ∂µz

∗
a + iz∗a∂mA

m − z∗aAµAµ + ∂m∂mz∗a
αz∗a = −izaȦ

0− 2iAµ∂µza − iza∂mA
m − zaAµAµ + ∂m∂mza. (43)

Note that herem = 1, 2. The Hessian matrix (40) is of rank four. Hence, there exist three
‘zeroth generation’ null eigenvectorsλ(0)A(x, y) satisfying∫

d2y λ
(0)A
i (x, y)W

(0)
ij (y, z) = 0 A = 1, 2, 3. (44)

We choose them to have components

λ
(0)1
i (x, y) = (1, 0, 0, 0, 0, 0, 0)δ2(x − y)
λ
(0)2
i (x, y) = (0, 1, 0, 0, 0, 0, 0)δ2(x − y)
λ
(0)3
i (x, y) = (0, 0, 1, 0, 0, 0, 0)δ2(x − y). (45)

Correspondingly we have the ‘zeroth generation’ constraints, which are of B type

�
(0)
k = αk = 0 k = 1, 2, 3. (46)

On the other hand, in this CP1 case we have also one more constraint, i.e. CP1 constraint
(38) which is of A type. Since the time derivative of� and d�/dt = z∗aża + zaż∗a are
independent of�k, we can obtain the following constraints

�
(0)
k = αk

�
(0)
4 =

d�

dt
= z∗aża + zaż∗a (47)

on the first stage of iteration.
Using the consistency condition for the constraints with time. We need to add the

equation�̇(0)k′ = 0, (k′ = 1, . . . ,4) to the equation of motion (39). Hence we have the set
of ‘first generation’ equations,L(1)i1 (x) = 0, i1 = 1, . . . ,11, as follows:

L
(1)
i1
(x) :=


L
(0)
i i1 = 1, . . . ,7

d

dt
(λ
(0)A
i L

(0)
i ) i1 = 7+ A, A = 1, 2, 3

d

dt
(�

(0)
4 ) i1 = 11.

(48)
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L
(1)
i1
(x) can be written in the general form

L
(1)
i1
(x) :=

∫
d2y [W(1)

i1j
(x, y)ϕ̈j (y)+ α(1)i1 (y)δ2(x − y)] = 0 i1 = 1, . . . ,11 (49)

where

W
(1)
i1j
(x, y) =


W̃
(0)
ij

0 0 0 −iz∗1 −iz∗2 iz1 iz2

0 0 κ/π 0 0 0 0
0 −κ/π 0 0 0 0 0
0 0 0 z∗1 z∗2 z1 z2

 δ
2(x − y) (50)

and

(α
(1)
i1
)T(x) = ((α(0)i )T, α(1)8 , α

(1)
9 , α

(1)
10 , α

(1)
11 )(x) (51)

with

α
(1)
8 = −2|za|2Ȧ0− κ

π
εmn∂

mȦn − 2A0 d

dt
|za|2

α
(1)
9 = −

κ

π
∂2Ȧ0+ 2|za|2Ȧ1+ 2A1 d

dt
|za|2+ i

d

dt
(z∗a∂

1za − za∂1z∗a)

α
(1)
10 =

κ

π
∂1Ȧ0+ 2|za|2Ȧ2+ 2A2 d

dt
|za|2+ i

d

dt
(z∗a∂

2za − za∂2ż∗a)

α
(1)
11 = 2ża ż

∗
a (52)

respectively.
SinceW(1)

ij (x, y) is of rank six, there exist two ‘first generation’ null eigenvectors
λ(1)A(x, y), A = 1, 2, with the previous three null eigenvectors extended as in section 2.
Similarly using equation (29), these null eigenvectors are explicitly given by

λ
(1)1
i1
(x, y) = (0, 0, 0,−2iz1,−2iz2, 0, 0, 1, 0, 0, i)δ2(x − y)

λ
(1)2
i1
(x, y) = (0, 0, 0, 0, 0,−2iz∗1,−2iz∗2,−1, 0, 0, i)δ2(x − y). (53)

Associated with these eigenvectors we have new constraints

�
(1)
1 = 2iża ż

∗
a + 2A0(zaż

∗
a − z∗aża)−

κ

π
εmn∂

mȦn + 4zaA
m∂mz

∗
a + 2|za|2∂mAm

+2i|za|2AµAµ − 2iza∂m∂
mz∗a

�
(1)
2 = 2iża ż

∗
a + 2A0(zaż

∗
a − z∗aża)+

κ

π
εmn∂

mȦn − 4z∗aA
m∂mza − 2|za|2∂mAm

+2i|za|2AµAµ − 2iz∗a∂m∂
mza. (54)

We now repeat the above procedure by using the consistency condition for the constraints
with time, and obtain the ‘second generation’ equation,L

(2)
i2
(x) = 0, i2 = 1, . . . ,13, with

L
(2)
i2
(x) :=



L
(0)
i i1 = 1, . . . ,7

d

dt
(λ
(0)A
i L

(0)
i ) i2 = 7+ A, A = 1, 2, 3

d

dt
(�

(0)
4 ) i2 = 11

d

dt
(λ
(1)B
i1

L
(1)
i1
) i2 = 11+ B, B = 1, 2.

(55)
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The resulting complete set of equations is of the form

L
(2)
i2
(x) :=

∫
d2y [W(2)

i2j
(x, y)ϕ̈j (y)+ α(2)i2 (y)δ2(x − y)] = 0 i2 = 1, . . . ,13 (56)

where

W
(2)
i2j
(x, y) =



W̃
(0)
ij

0 0 0 −iz∗1 −iz∗2 iz1 iz2

0 0 κ/π 0 0 0 0

0 −κ/π 0 0 0 0 0

0 0 0 z∗1 z∗2 z1 z2

0 (κ/π)∂2 −(κ/π)∂1 W
(2)
12,1 W

(2)
12,2 W

(2)
12,3 W

(2)
12,4

0 −(κ/π)∂2 (κ/π)∂1 W
(2)
13,1 W

(2)
13,2 W

(2)
13,3 W

(2)
13,4


δ2(x − y)

(57)

with

W
(2)
12,k = 2(iż∗k − z∗kA0) = W(2)

13,k k = 1, 2

W
(2)
12,l = 2(iżl−2− zl−2A

0) = W13,l l = 3, 4 (58)

and

(α
(2)
i2
)T(x) = ((α(1)i1 )T, α

(2)
12 , α

(2)
13 )(x) (59)

with

α
(2)
12 = 2(zaż

∗
a − żaz∗a)Ȧ0+ 2|za|2∂mȦm + 4i|za|2AµȦµ + 4

d

dt
(Amza∂mz

∗
a)

+2∂mA
m d

dt
|za|2+ 2iAµA

µ d

dt
|za|2− 2i

d

dt
(za∂m∂

mz∗a)

α
(2)
13 = 2(zaż

∗
a − z∗aża)Ȧ0− 2|za|2∂mȦm + 4i|za|2AµȦµ − 4

d

dt
(Amz∗a∂mza)

−2∂mA
m d

dt
|za|2+ 2iAµA

µ d

dt
|za|2− 2i

d

dt
(z∗a∂m∂

mza). (60)

In addition to the previous null eigenvectors, we thus have a new null eigenvector

λ
(2)
i2
(x, y) = (0, 0, 0, 0, 0, 0, 0, 0, 2∂1

x , 2∂2
x , 0, 1,−1)δ2(x − y). (61)

The associated constraint is now found to vanish ‘identically’

�
(2)
1 (x) =

∫
d2y λ

(2)
i2
(x, y)L

(2)
i2
(y) = 2∂1α

(2)
9 + 2∂2α

(2)
10 + α(2)12 − α(2)13 = 0. (62)

The algorithm ends at this point.
The local symmetries of the action (37) are encoded in the identity (62). Using (39),

(49), and (56), the identity (62) is equivalent to

�
(2)
1 =

d

dt
(∂1L

(0)
2 + ∂2L

(0)
3 − iz1L

(0)
4 − iz2L

(0)
5 + iz∗1L

(0)
6 + iz∗2L

(0)
7 )+

d2

dt2
L
(0)
1 ≡ 0. (63)
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Comparing this with equation (33) for the gauge-invariant CP1 model, we have the following
relations

φ
2(1)
1 (x, y) = ∂1

x δ
2(x − y) φ

3(1)
1 (x, y) = ∂2

x δ
2(x − y)

φ
4(1)
1 (x, y) = −iz1δ

2(x − y) φ
5(1)
1 (x, y) = −iz2δ

2(x − y)
φ

6(1)
1 (x, y) = iz∗1δ

2(x − y) φ
7(1)
1 (x, y) = iz∗2δ

2(x − y)
φ

1(2)
2 (x, y) = δ2(x − y) (64)

while all the others are vanishing. Since the action (37) is invariant under the transformation

δϕi(y) =
∑
k

∫
d2x (3k(x)φ

i(0)
k + 3̇k(x)φ

i(1)
k (x, y)+ 3̈k(x)φ

i(2)
k (x, y)) (65)

the resulting symmetry transformations in the CP1 model are finally obtained as

δAµ(x) = ∂µ31 δza(x) = −iza31 δz∗a(x) = iz∗a31 (66)

which are the well known gauge transformations of the corresponding model. As a result,
we have systematically derived the set of symmetry transformations starting from the
Lagrangian of the gauge-invariant CP1 model with CS term.

4. Conclusion

In conclusion, we have considered the Lagrangian approach of two different types of gauge-
invariant systems, the CSM having B-type constraints and the CP1 model having mixed A-
and B-type ones. We have first turned the anomalous CSM into a fully first-class constrained
system, following the BFT method, and have shown how the symmetry transformation could
be derived on a purely Lagrangian level, in particular without resorting to the Hamiltonian
formulation. Furthermore, we have also systematically derived the well known symmetry
transformation by analysing the CP1 model, which is of different type from the CSM because
this model imposes the CP1 constraint by hand. As a result, we have shown that the
Lagrangian approach could provide a systematic derivation of the symmetry transformation
of a Lagrangian. We hope that the Lagrangian approach employed in our derivation will
be of much interest for complicated Lagrangians whose full local symmetries cannot easily
be extracted out, and also in the context of the field–anti-field formalism while keeping the
manifestly Lorentz covariant partition function.
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